CPEB1 promotes differentiation and suppresses EMT in mammary epithelial cells.
نویسندگان
چکیده
Downregulation of CPEB1, a sequence-specific RNA-binding protein, in a mouse mammary epithelial cell line (CID-9) causes epithelial-to-mesenchymal transition (EMT), based on several criteria. First, CPEB1 knockdown decreases protein levels of E-cadherin and β-catenin but increases those of vimentin and Twist1. Second, the motility of CPEB1-depleted cells is increased. Third, CID-9 cells normally form growth-arrested, polarized and three-dimensional acini upon culture in extracellular matrix, but CPEB1-deficient CID-9 cells form nonpolarized proliferating colonies lacking a central cavity. CPEB1 downregulates Twist1 expression by binding to its mRNA, shortening its poly(A) tract and repressing its translation. CID-9 cultures contain both myoepithelial and luminal epithelial cells. CPEB1 increases during CID-9 cell differentiation, is predominantly expressed in myoepithelial cells, and its knockdown prevents expression of the myoepithelial marker p63. CPEB1 is present in proliferating subpopulations of pure luminal epithelial cells (SCp2) and myoepithelial cells (SCg6), but its depletion increases Twist1 only in SCg6 cells and fails to downregulate E-cadherin in SCp2 cells. We propose that myoepithelial cells prevent EMT by influencing the polarity and proliferation of luminal epithelial cells in a mechanism that requires translational silencing of myoepithelial Twist1 by CPEB1.
منابع مشابه
A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells
The embryonic programme 'epithelial-mesenchymal transition' (EMT) is thought to promote malignant tumour progression. The transcriptional repressor zinc-finger E-box binding homeobox 1 (ZEB1) is a crucial inducer of EMT in various human tumours, and was recently shown to promote invasion and metastasis of tumour cells. Here, we report that ZEB1 directly suppresses transcription of microRNA-200 ...
متن کاملCrosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression
Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...
متن کاملEpithelial to mesenchymal transition concept in Cancer: Review article
Owing to this fact that most of the mortalities in cancers are as a result of metastasis, study on the involved pathways in metastasis including Epithelial to mesenchymal transition (EMT) would be so critical and important. Up to date, several extensive studies have been carried out to determine the correlation between EMT and cancer and their results have shown that the EMT plays pivotal role ...
متن کاملTissue Transglutaminase Promotes Drug Resistance and Invasion by Inducing Mesenchymal Transition in Mammary Epithelial Cells
Recent observations that aberrant expression of tissue transglutaminase (TG2) promotes growth, survival, and metastasis of multiple tumor types is of great significance and could yield novel therapeutic targets for improved patient outcomes. To accomplish this, a clear understanding of how TG2 contributes to these phenotypes is essential. Using mammary epithelial cell lines (MCF10A, MCF12A, MCF...
متن کاملTGF-β1-Induced Epithelial–Mesenchymal Transition Promotes Monocyte/Macrophage Properties in Breast Cancer Cells
Breast cancer progression toward metastatic disease is linked to re-activation of epithelial-mesenchymal transition (EMT), a latent developmental process. Breast cancer cells undergoing EMT lose epithelial characteristics and gain the capacity to invade the surrounding tissue and migrate away from the primary tumor. However, less is known about the possible role of EMT in providing cancer cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 127 Pt 10 شماره
صفحات -
تاریخ انتشار 2014